Sea level prediction using ARIMA, SVR and LSTM neural network: assessing the impact of ensemble Ocean-Atmospheric processes on models’ accuracy

نویسندگان

چکیده

This study aims to integrate a broad spectrum of ocean-atmospheric variables predict sea level variation along West Peninsular Malaysia coastline using machine learning and deep techniques. 4 scenarios different combinations such as surface temperature, salinity, density, atmospheric pressure, wind speed, total cloud cover, precipitation data were used train ARIMA, SVR LSTM neural network models. Results show that processes have more influence on prediction accuracy than ocean processes. Combining improves the model at all stations by 1- 9% for both LSTM. The means R optimal performing LSTM, ARIMA models are 0.853, 0.748 0.710, respectively. Comparison performance shows trained with is predicting except Pulua Langkawi where without performed best due dominating tide influence. suggests suitability vary across regions selecting an depends dominant physical governing variability in area investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the impact of attending efl classes on the level of depression of iranian female learners and their attributional complexity

می توان گفت واقعیت چند لایه ا ی کلاس های زبان انگلیسی بسیار حائز اهمیت است، زیرا عواطف و بینش های زبان آموزان تحت تاثیر قرار می گیرد. در پژوهش پیش رو، گفته می شود که دبیران با در پیش گرفتن رویکرد فرا-انسانگرایی ، قادرند در زندگی دانش آموزانشان نقش مهمی را ایفا سازند. بر اساس گفته ی ویلیامز و بردن (2000)، برای کرل راجرز، یکی از بنیان گذاران رویکرد انسانگرایی ، یادگیری بر مبنای تجربه، نوعی از یاد...

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

the impact of using inspirational quotes on abstract vocabulary recall

the present study is an attempt to investigate the potential impact of inspirational quotes on improving english abstract vocabulary recall. to achieve this goal, a multiple choice language proficiency test of 60 items including vocabulary and grammar component was administered to a sample of 63 second-semester male and female students whose age ranged between 17 to 22 and they were studying en...

15 صفحه اول

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

متن کامل

Prediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models

Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geomatics, Natural Hazards and Risk

سال: 2021

ISSN: ['1947-5705', '1947-5713']

DOI: https://doi.org/10.1080/19475705.2021.1887372